منابع مشابه
$G$-Frames for operators in Hilbert spaces
$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...
متن کامل$G$-dual Frames in Hilbert $C^{*}$-module Spaces
In this paper, we introduce the concept of $g$-dual frames for Hilbert $C^{*}$-modules, and then the properties and stability results of $g$-dual frames are given. A characterization of $g$-dual frames, approximately dual frames and dual frames of a given frame is established. We also give some examples to show that the characterization of $g$-dual frames for Riesz bases in Hilbert spaces is ...
متن کامل(C; C\')-Controlled g-Fusion Frames in Hilbert Spaces
Controlled frames in Hilbert spaces have been recently introduced by P. Balazs and etc. for improving the numerical efficiency of interactive algorithms for inverting the frame operator. In this paper we develop a theory based on g-fusion frames on Hilbert spaces, which provides exactly the frameworks not only to model new frames on Hilbert spaces but also for deriving robust operators. In part...
متن کاملDuals and approximate duals of g-frames in Hilbert spaces
In this paper we get some results and applications for duals and approximate duals of g-frames in Hilbert spaces. In particular, we consider the stability of duals and approximate duals under bounded operators and we study duals and approximate duals of g-frames in the direct sum of Hilbert spaces. We also obtain some results for perturbations of approximate duals.
متن کاملMultipliers of continuous $G$-frames in Hilbert spaces
In this paper we introduce continuous $g$-Bessel multipliers in Hilbert spaces and investigate some of their properties. We provide some conditions under which a continuous $g$-Bessel multiplier is a compact operator. Also, we show the continuous dependency of continuous $g$-Bessel multipliers on their parameters.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2011
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2010.08.042